137 research outputs found

    NMOS-based integrated modular bypass for use in solar systems (NIMBUS): intelligent bypass for reducing partial shading power loss in solar panel applications

    Get PDF
    NMOS-based Integrated Modular Bypass for Use in Solar systems (NIMBUS) is designed as a replacement for the traditional bypass diode, used in common solar panels. Because of the series connection between the individual solar cells, the power output of a photovoltaic (PV) panel will drop disproportionally under partial shading. Currently, this is solved by dividing the PV panel into substrings, each with a diode bypass placed in parallel. This allows an alternative current path. However, the diodes still have a significant voltage drop (about 350 mV), and due to the fairly large currents in a panel, the diodes are dissipating power that we would rather see at the output of the panel. The NIMBUS chip, being a low-voltage-drop switch, aims to replace these diodes and, thus, reduce that power loss. NIMBUS is a smart bypass: a completely stand-alone system that detects the failing of one or more cells and activates when necessary. It is designed for a 100-mV voltage drop under a 5-A load current. When two or more NIMBUS chips are placed in parallel, an internal synchronization circuit ensures proper operation to provide for larger load currents. This paper will elaborate on the operation, design and implementation of the NIMBUS chip, as well as on the first measurements

    Driving electronics for OLED lighting

    Get PDF
    This paper proposes the concept of integrating an OLED (foil) and its driving electronics into one module. A complete light system consisting of these modules is the ultimate goal of this work. The main focus in this article is on the design of the driver chip and the circuit implementation. The measurement results confirm that it is possible to control the light output of the different modules

    A high-efficiency and compact charge pump with charge recycling scheme and finger boost capacitor

    Get PDF
    A 16-phase 8-branch charge pump with finger boost capacitor is proposed to increase the power efficiency. Compared with the standard capacitor, the finger capacitor can significantly reduce the parasitic capacitance. The proposed four-stage charge pump with finger capacitor can achieve 14.2 V output voltage from a 3 V power supply. The finger capacitor can increase the power efficiency of the charge pump to 60.5% and save chip area as well

    Active asynchronous secondary side voltage clamping

    Get PDF
    An asynchronous active voltage clamp for the secondary side of switching DC-DC converters is proposed. The control of the proposed clamping circuit is independent from the main converter, thus allowing use of a physically small inductor and offering increased control over the clamping operation. Measurements on a 1 MHz implementation of the asynchronous active voltage clamp on the secondary side of a prototype 220 kHz phase shifted full bridge DC-DC converter confirm the effectiveness of the voltage clamping and the improved converter efficiency

    Switch for the optimization of module power by reconfiguration of all strings (SOMBRA) : an insulated integrated switch for a reconfigurable solar panel

    Get PDF
    The energy yield of a solar panel can be severely impacted by partial shading. Shade caused by nearby static objects can hardly be avoided in installations such as building-applied or building-integrated photovoltaics. Smart reconfigurable photovoltaics (PV) panels are able to change their intra-module configuration to reduce this impact: small substrings can be rewired to be connected in a more optimal configuration. To achieve this, a reconfiguration switch needs to be designed. In this paper a switch for the optimization of module power by reconfiguration of all strings (SOMBRA), a smart switch, is presented. SOMBRA is a fully integrated, low-ohmic switch, designed for currents up to 10 A. It is fully floating up to 50 V, while still being able to communicate with a central unit as an inter-integrated circuit ((IC)-C-2) slave. Two versions were realized, SOMBRA-LV10 for low voltages (LV) and a load current of 10 A, and SOMBRA-HV05 for high voltages (HV) and a load current of 5 A. Measurements proved these devices to be functional, measuring an on-resistance of 1.3 m Omega for SOMBRA-LV10 and 7.3 m Omega for SOMBRA-HV05. This paper will elaborate on the operation, design, and implementation of SOMRBA, as well as the first tests with a small reconfigurable PV module

    A Fully Integrated Ultra-Low-Power High-Voltage Driver for Bistable LCDs

    Get PDF
    P

    A modular and interactive OLED-based lighting system

    Get PDF
    The concept of a flexible, large-area, organic light emitting diode (OLED)-based lighting system with a modular structure and built-in intelligent light management is introduced. Such a flexible, thin, portable lighting system with discreetly integrated electronics is important in order to allow the implementation of the lighting system into a variety of places, such as cars and temporary expedition areas. A modular construction of an OLED lighting panel makes it possible to control each OLED cell individually. This not only enables us to counteract aging or degradation effects in the OLED cells but it also allows individual OLED module brightness control to support human or ambient interaction based on integrated or centralized sensors. Moreover, integrating the driving electronics in the backplane of an OLED module improves the energy efficiency of operating large OLED panels. The thin, modular construction and individual, dynamic control are successfully demonstrated

    An intelligent driving scheme for high-voltage display drivers

    Get PDF
    An algorithm to reduce the power consumption in bistable display drivers is presented. This algorithm can also be used in other flat panel displays like OLEDs, standard (S)TN LCDs,... and is very important for battery-powered applications. The complete block diagram of the low-power high-voltage display driver and a comparison of the normalized frame energy for different driving schemes and different patterns are presented

    Introduction of a pseudo-6th order ISDN splitter with bandstop topology

    Get PDF
    A newly developed ‘integrated services digital network’ (ISDN) splitter with bandstop (BS) topology is presented and compared to an actual ISDN splitter with a traditional lowpass (LP) topology. The LP-to-BS topology change reduced the amount of filter stages: a LP ISDN splitter requires an 8th order elliptic-like filter in order to be compliant to the standard ‘TS 101 952-1-4 V1.1.1’ [1] of the European Telecommunications Standards Institute (ETSI), whereas the BS ISDN splitter only needs a pseudo-6th order elliptic-like filter. The design of the new BS ISDN filter is discussed in the light of the enforced ETSI specifications. Furthermore, both the ISDN splitters are compared in the field of their specific stopband performance and their physical implementation. The area reduction that comes together with the introduction of the new ISDN splitter with BS topology is more than 25%
    • …
    corecore